18 février 2020Dwarf galaxies as local laboratories to study the interplay between star formation and low metallicity environment

© 2024 Observatoire Astronomique de Strasbourg | Webdesign et développement Alchimy.

Le 16 juin 2017
De 10h30 à 12h00

Sue Madden

CEA


The interstellar medium (ISM) of galaxies harbors the reservoir of metals deposited over the history of star formation of a galaxy and contains the imprint of the astrophysical processes governing a galaxy’s evolution. Understanding how the ISM becomes enriched with heavy elements, particularly in primordial ISM, would place important constraints on galaxy evolution models. Local universe dwarf galaxies provide a wide range of metallicities to study star formation and it feedback on ISM in conditions that may be representative of early universe environments. We have been carrying multi-wavelength studies of low metallicity dwarf galaxies with the goal of understanding how metallicity impacts the evolution of the gas and dust and thus the star formation properties in galaxies. Their low mass, prominent star formation activity, and metal-poor ISM have a striking impact on the physical processes that take place to shape the structure of the ISM. The properties of the gas and dust associated with molecular clouds, photodissociation regions and ionised phases of dwarf galaxies show notable differences from those of their more metal rich counterparts. I will describe what we know to date from surveys and modelling efforts of the dust and gas and star formation properties in low metallicity dwarf galaxies.